The Physics of Music

When a stringed instrument is plucked, the resulting sound is comprised of the pitch of the string (the fundamental) plus quieter harmonic vibrations of the string as shown in the example on the right. This is known as the overtone series.

Fundamental	Freq. Hz 1	Note C	
Harmonic			
2	264	C 2	One Octave Higher
3	396	G	5th above C2
4	528	C 3	Two octaves above fundamental
5	660	E	3rd above C3
6	792	G	5th above C3

Just Tuning

The Just Scale (sometimes referred to as harmonic tuning) occurs naturally as a result of the overtone series for simple systems such as vibrating strings. All the notes in the scale are related by rational numbers. Unfortunately, with Just tuning, the tuning depends on the scale you are using - the tuning for C Major is not the same as for D Major, for example.

The steps of the scale are found by using these simple fractions of the root frequency:

1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	octave
1	$9 / 8$	$5 / 4$	$4 / 3$	$3 / 2$	$5 / 3$	$15 / 8$	$2 / 1$

Here are the note frequencies using the formula above. Note the pitches in bold are in conflict with the same notes from other scales.

C 264	D 297	E 330	F 352	G 396	A 440	B 495	C 528
G 396	A 445.5	B 495	C 528	D 594	E 660	F\# 742.5	G 792
D 297	E 334.1	F\# 371.2	G 396	A 445.5	B 495	C\# 556.9	D 594
F352	G 396	A 440	Bb 469.3	C 528	D 586.7	E 660	F 704
Equal Tempered Tuning							

For the equal tempered scale, the frequency of each succeeding note in the chromatic scale is calculated by multiplying the current note by the twelfth root of 2 (1.059463...). All keys use the same pitches.

A	$220.00 \times 1.059=233.08=\mathrm{Bb}$
Bb	$233.08 \times 1.059=246.94=B$
B	$246.94 \times 1.059=261.62=C$
C	$261.63 \times 1.059=277.18=\mathrm{C} \#$
C\#	$277.18 \times 1.059=293.66=\mathrm{D}$
D	$293.66 \times 1.059=311.12=\mathrm{D} \#$
D\#	$311.13 \times 1.059=329.62=E$
E	$329.63 \times 1.059=349.23$
F	$349.23 \times 1.059=369.99=\mathrm{F} \#$
F\#	$369.99 \times 1.059=391.99=\mathrm{G}$
G	$392.00 \times 1.059=415.30=G \#$
G\#	$415.30 \times 1.059=440.00=\mathrm{A}$
A	440.00

Notes of a G chord
Just tuning:
G $\quad 196.00$
B $\quad 245.00$
D $\quad 294.00$

Equal tempered tuning:
G $\quad 196.00$

B 246.94
Out of tune by:
1.94
-0.34

